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Abstract We consider a stochastic N -particle model for the spatially homogeneous Boltz-
mann evolution and prove its convergence to the associated Boltzmann equation when
N −→ ∞, with non-asymptotic estimates: for any time T > 0, we bound the distance be-
tween the empirical measure of the particle system and the measure given by the Boltzmann
evolution in a relevant Hilbert space. The control got is Gaussian, i.e. we prove that the dis-
tance is bigger than xN−1/2 with a probability of type O(e−x2

). The two main ingredients
are a control of fluctuations due to the discrete nature of collisions and a kind of Lipschitz
continuity for the Boltzmann collision kernel. We study more extensively the case where
our Hilbert space is the homogeneous negative Sobolev space Ḣ−s . Then we are only able
to give bounds for Maxwellian models; however, numerical computations tend to show that
our results are useful in practice.

Keywords Kinetic theory · Spatially homogeneous Boltzmann equation · Mean field
limit · Nonasymptotic bounds

Introduction

The Boltzmann equation was written down by L. Boltzmann [3] in 1872, five years after
Maxwell’s seminal paper [14], to describe the behaviour of a large number of gas molecules
interacting by pairwise collisions. Proving rigorously the heuristic arguments of Boltzmann
to get some convergence of the N -particle model to the continuous Boltzmann equation
when N −→ ∞ is an extremely difficult challenge that mathematicians are still dealing
with.

Here we are only going to handle the spatially homogeneous Boltzmann equation (also
called mean field Boltzmann equation), in which one forgets the positions of the gas parti-
cles to concentrate only on the collision phenomenon. Then proving the convergence of the
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N -particle system to the continuous equation is a typical mean field limit problem—a par-
ticle model is said to be mean field when each particle interacts with comparable strength
with all the other ones. Such a problem, which was first proposed by Kac [11], is far more
tractable than the original one, and convergence results, mostly qualitative, have already
been obtained for it (see Sect. 6.4).

Here however we are interested in a quantitative and non-asymptotic version of these
results. We would also like to set our results in an infinite-dimensional setting, that is, to say
that not only any reasonable functional of the particle model converges to the corresponding
functional of the limit system, but moreover that all these functionals converge uniformly.
The quantitative convergence we are going to prove will even have an N−1/2 speed, typical
of the uniform central limit theory (see [7] about it).

Concerning concrete Boltzmann models, in the actual state of my work I am only able
to use my results for Maxwellian systems, and moreover constants in convergence bounds
deteriorate rapidly with time. However that does not seem to be a fundamental feature of my
approach, and further improvements might overcome these issues.

Important Remark 0.1 There are two sides in this work. The first one, whose climax is
Theorem 3.3, is abstract: it consists in showing how Hilbert spaces can be used to prove a
new powerful type of convergence results for collision models like Boltzmann’s. That work
is a priori likely to be applied to a wide range of situations, but for each of them checking the
hypotheses of the abstract theorem is a different challenge. The second side, which is more
physical, consists in studying one particular case of application of our formulas, namely
the Boltzmann model looked at in the Ḣ−s space, for which we obtain precise numerical
bounds (cf. Sect. 6.3). Though the results got for that particular choice can be proved to be
definitely limited in some way (cf. Sect. 4.1), that may not be true any longer for a smarter
choice of Hilbert space—which would however be more complicated to handle. So this
article highlights a way of studying collision models, but remains at a simple level in the
applications, hence the title “some ideas”.

Here is some notation which will be used throughout this paper:

• The space R
d is equipped with its Euclidean structure, whose norm is denoted by | · |.

• f : E −→ F being a measurable function and μ a measure on E, the image measure of
μ by f on F will be denoted f #μ.

• δx denotes a Dirac mass at x.
• S(Rd) is the Schwartz space on R

d , i.e. the set of (complex-valued) C∞ functions on R
d

which tend to 0 at infinity faster than any |x|−k , as well as all their derivatives.
• The Fourier transform of a function f ∈ S(Rd) is denoted by ̂f , with the unitary conven-

tion ̂f (ξ) = (2π)−d/2
∫

Rd f (x)e−iξ ·xdx.
• The notation ‖ · ‖ will be used to denote Hilbert norms in functional spaces. If Q is

a linear operator between two Hilbert spaces, its operator norm sup‖x‖�1 ‖Qx‖ will be
denoted |||Q|||.

• x, y and z being three points of an affine Hilbert space with y, z �= x, ŷxz denotes the
angle between −→

xy and −→
xz, which is an element of [0,π].

• The identity matrix of size d is denoted Id .
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1 The Model

1.1 The Microscopic Model

Let us describe the particle model for the spatially homogeneous Boltzmann evolution. Such
models have been first proposed by Kac [11] and later thoroughly studied by Sznitman [21],
Spohn [19] and others. There are N identical particles indexed by 0, . . . ,N − 1, each par-
ticle i being characterized by its velocity vi ∈ R

d . One imposes random collision times, so
that the microscopic evolution is a Markov process. The way two particles with respective
velocities v and w hit each other is described by some positive measure γv,w on (Rd)2,
N−1dγv,w(v′,w′) being the collision rate from state (v,w) to state (v′,w′). In other words,
the generator L of the Markov process is

Lf (v0, . . . , vN−1)

= 1

2N

∑

0�i,j<N

∫

(Rd )2

(

− f (v0, . . . , vN−1) + f (. . . , v′
i , . . . , v

′
j , . . .)

)

dγvi ,vj
(v′

i , v
′
j ).

(1.1)

We may add to this model some extra physical conditions. First, we will always suppose
that the momentum and energy are conserved by collisions, and that the model is invariant
by velocity translation or rotation, i.e. that for all v,w ∈ R

d , for any (positive) isometry J

of R
d ;

γv,w-a.e. v′ + w′ = v + w, (1.2)

γv,w-a.e. |w′ − v′| = |w − v|, (1.3)

γJv,Jw = (J, J )#γv,w. (1.4)

When conditions (1.2) to (1.4) are satisfied, the model is completely described by the family
of measures (γ u)u∈(0,∞) on (0,π ], where dγ u(θ) is the proportion, by unit of time, of parti-
cles with relative speed u which undergo a collision making them deviate by an angle θ in
the collision referential.

Moreover, it is often assumed that the γ u have a scale invariance property, in the sense
that there exists a real parameter g such that for any λ ∈ (0,+∞),

γ λu = λgγ u. (1.5)

For instance, the hard sphere model is scale-invariant with g = 1. Another very interesting
particular case is when g = 0—then one says that the model is Maxwellian. In this article
the concrete results obtained will actually concern Maxwellian models.

Before turning to the macroscopic model, let us make some remarks on the microscopic
one:

Remark 1.1

1. The N−1 factor in (1.1) is essential to get the mean field limit: it morally says that
the global collision rate of one particle is independent of the total number of parti-
cles.
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2. Strictly speaking, generator (1.1) allows a particle to collide with itself, which is physi-
cally absurd. Yet because of the conservation law (1.3), the auto-collision term is actually
zero, so there is no problem.

3. The γv,w have to satisfy some integrability conditions for the Markov process to be well-
defined. For instance, if conditions (1.2) to (1.5) are satisfied, then it suffices that for an
arbitrarily chosen u ∈ (0,∞),

∫ π

0 θd−1dγ u(θ) is finite, cf. [20].

1.2 The Macroscopic Model

The macroscopic space-homogeneous Boltzmann equation [4] is obtained informally by
letting N tend to infinity in the microscopic evolution. Then the particles’ velocities are
described by they empirical measure, which is a (non-atomic in general) probability measure
μt on R

d . The evolution of that measure is deterministic and is governed by the equation:

Dtμ = Q(μt ,μt ), (1.6)

where Q is the Boltzmann collision kernel of the system, formally defined by:

Q(μ,ν) = 1

2

∫ (∫

(−δv − δw + δv′ + δw′
)

dγv,w(v′,w′)
)

dμ(v)dν(w). (1.7)

Equation (1.6) is an ordinary differential equation in an infinite-dimensional space; that
equation is non-linear because of the quadratic term Q(μ,μ). Unique existence of a solution
to it has been thoroughly studied over the last decades [6, 22]. For our theory to work, we
will need to consider a setting where that unique existence is achieved in some convenient
space—which is quite logical altogether. Later we will see concrete examples where (1.6)
behaves well for our purpose.

1.3 Conservation Laws, Convergence to Equilibrium

Because of the conservation laws (1.2) and (1.3), we get d + 1 invariant functions for the
microscopic system: the first d are synthetised in the momentum P = ∑N−1

i=0 vi , and the last
one is the energy K = 1

2

∑N−1
i=0 |vi |2. In the macroscopic model, these invariants become

p = ∫

vdμ(v) and k = 1
2

∫ |v|2dμ(v). Moreover the fact that the macroscopic model derives
from the description of an evolution of particles implies two extra properties for it: first
positivity of (1.6), which means that if μ0 is a positive measure, then so are the μt for t

positive; secondly conservation of mass which gives the (d + 2)-nd invariant m = ∫

dμ(v)

for the macroscopic equation.
Concerning equilibrium, if we impose some minimal non-degeneracy condition

(see [22]), then it is a well-known beautiful result due to Boltzmann [3] that (1.6) is dis-
sipative for positive measures and converges to an equilibrium measure μeq depending only
on p, k and m: for m = 1 and p = 0, it is

dμeq(v) =
( d

4πk

)d/2
e−d|v|2/4kdv, (1.8)

and it has the invariance properties μeq(p, k,1) = τp#μeq(0, k − p2/2,1), τp being the trans-
lation by vector p, and μeq(λp,λk,λm) = λμeq(p, k,m). More recently a beautiful quanti-
tative version of that convergence result has been proved by Carlen, Gabetta and Toscani [5].
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For the microscopic model, there is also a unique ergodic equilibrium measure for each
value of P and K (N being fixed), which is merely the uniform measure on the (dN −d−1)-
dimensional sphere1 of (Rd)N made of the N -uples of vectors having these P and K . Note
that for N particles with momentum Np and energy Nk, the marginals of that measure tend
to the continuous equilibrium measure μeq(p, k,1) when N −→ ∞.

Finally it is worth recalling that the microscopic process is reversible under its equilib-
rium measure, while on the contrary the macroscopic equation (1.6) exhibits a dissipative
behaviour—a phenomenon which caused much trouble at Boltzmann’s time, but has been
well understood today.

2 Homogeneous Sobolev Spaces

2.1 Why Homogeneous Sobolev Spaces?

To be able to speak of quantitative convergence, we will work in some Banach space. Which
one will we take? As we want to compare the empirical measure of our particle system to its
limit evolution, a natural choice is to take some coupling distance between measures—say,
the W1 Wasserstein distance [23, Sect. 7], defined for μ, ν two positive measures with the
same mass by:

W1(μ, ν) = sup
f 1-Lip.

∣

∣

∣

∫

f d(ν − μ)

∣

∣

∣, (2.1)

where “f 1-Lip.” means that the supremum is taken over all 1-Lipschitz functions on R
d .

However it turns out that it is hopeless to get an N−1/2 rate of convergence in such a space,
because testing ν − μ against so much test functions makes the uniform central limit theory
fail: see [7, Sect. 6.4] for more details. We also give a more intuitive, completely different
explanation of that fact in Appendix.

Thus the idea is to test ν − μ against a smaller space made of more regular functions.
Sobolev spaces Ws,p , s > 0, are such natural test spaces; then ν − μ will be seen as an
element of the dual space W−s,p/(p−1). For our theory we will have to work in a Hilbert
space, so we take p = 2 and work in W−s,2 = H−s ; then we can take s fractional, which will
turn out to be useful indeed. Yet since defining a norm for H−s spaces requires to choose
some arbitrary length, which is physically annoying, we will rather consider homogeneous
Ḣ−s spaces, which do have a canonical norm (plus other advantages). Note however, cf.
Remark 0.1, that this choice is only one possibility—certainly particularly reasonable—
among other ones, and that trickier choices might also be relevant.

2.2 Definition and Useful Properties

Let us define properly the Ḣ−s spaces.

Definition 2.1 Let s ∈ R, and for f ∈ S(Rd), set

‖f ‖Ḣ−s =
(∫

Rd

| ̂f (ξ)|2|ξ |−2sdξ

)1/2

. (2.2)

1Possibly of radius 0.
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Then those of the f ∈ S(Rd) for which ‖f ‖Ḣ−s < ∞, equipped with the norm ‖ · ‖Ḣ−s ,
constitute a pre-Hilbert space with scalar product

〈f,g〉Ḣ−s =
∫

Rd

̂f (ξ)ĝ(ξ)|ξ |−2sdξ. (2.3)

The Hilbert space obtained by completing it is denoted Ḣ−s .

Remark 2.2 For a physicist, f : R
d −→ C has some homogeneity: say, the elements in

R
d are measured in x (generally x is a unit of length, say meters) and the elements in C

are measured in y (which will often be a density, say kg·m−d ). Then ‖f ‖Ḣ−s is measured
in y·xs+d/2 (in our example, ‖f ‖Ḣ−s would be measured in kg·ms−d/2). Equivalently, if μ

is a measure on R
d , the physical dimension of ‖μ‖Ḣ−s is z·xs−d/2, x being the physical

dimension of the elements of R
d and z the physical dimension of μ (which in our example

would be kg).

As we told in Sect. 2.1, bounding a function or a measure in Ḣ−s means bounding uni-
formly its integral against some class of regular functions:

Proposition 2.3 Define Ḣ s in the same way as Ḣ−s . Then, for any f for which it makes
sense:

‖f ‖Ḣ−s = sup
‖g‖Ḣ s �1

∣

∣

∣

∫

Rd

f (x)g(x)dx

∣

∣

∣. (2.4)

Lemma 2.4 For s ∈]0, d[, let φs be the locally integrable function

φs(x) = |x|−(d−s), (2.5)

then one has for all f,g ∈ S(Rd):

〈f,g〉 = c(s, d)2
〈

f ∗ φs, g ∗ φs

〉

L2(Rd )
, (2.6)

with

c(s, d) = �((d − s)/2)

(2π)d/2�(s/2)
, (2.7)

�(·) being Euler’s Gamma function.

Proof Use that the Fourier transform of |ξ |−s is (2π)d/2c(s, d)φs(x), cf. [18, exercise
V-10]. �

Immediate proposition 2.5 Let Jλ be a similarity of R
d with dilation factor λ, then for any

map f ∈ Ḣ−s ,

‖f ◦ Jλ‖Ḣ−s = λs+d/2‖f ‖Ḣ−s . (2.8)

Equivalently, for any measure μ ∈ Ḣ−s ,

‖Jλ#μ‖Ḣ−s = λs−d/2‖μ‖Ḣ−s . (2.9)

☛ From now on, we will always write implicitly s = d/2 + r .
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Proposition 2.6 Suppose d � 2,2 and let μ be a compactly supported signed measure on
R

d with total mass 0, then for any r ∈ (0,1), μ can be seen as an element of Ḣ−s .

Proof Thanks to Lemma 2.4 we just need to prove that μ∗φs is a square-integrable function.
Suppose that μ is supported by the ball B(R) of radius R centered at 0 and splits into
μ+ −μ− with μ+ and μ− positive measures each of total mass M . Then for ρ > 0, on B(ρ)

μ ∗ φs is equal to μ ∗ (1B(R+ρ)φs), so the L2 norm of 1B(ρ)(μ ∗ φs) is bounded above by
2M · ‖1B(R+ρ)φs‖L2 < ∞. Thus μ ∗ φs is locally L2. On the other hand, for |x| = ρ > R,

|(μ ∗ φs)(x)| � M

(

1

(ρ − R)d/2−r
− 1

(ρ + R)d/2−r

)

� 2MR
d/2 − r

(r − R)d/2+1−r
, (2.10)

so μ ∗ φs is L2 at infinity, which finishes the proof. �

Corollary 2.7 Still suppose d � 2, then for r ∈ (0,1), any signed measure with zero total
mass, if it has an r-th polynomial momentum, can be seen as en element of Ḣ−s .

Proof Let μ = μ+ − μ− be such a measure with its Hahn decomposition, μ+ and μ− each
having total mass M . Then the integral Minkowski inequality gives

‖μ‖Ḣ−s � 1

M

∫

(Rd )2
‖δx − δy‖Ḣ−s dμ+(x)dμ−(y)

= Cr

M
·
∫

(Rd )2
|x − y|rdμ+(x)dμ−(y) < ∞, (2.11)

Cr being the Ḣ−s norm of any δx − δy for |x − y| = 1, which is finite by the previous
proposition. �

Remark 2.8 The Ḣ−s norm allows us to measure the distance between two (sufficiently
integrable) probability measures, but speaking of the Ḣ−s norm of a single probability
measure would be nonsense! Note also that, by Sobolev imbedding, one can bound above
‖ν−μ‖Ḣ−s , for any two probability measures μ and ν, by (up to some explicit multiplicative
constant)

W1,r (μ, ν) = sup

{∣

∣

∣

∣

∫

f dμ −
∫

f dν

∣

∣

∣

∣

; ∀x, y |f (x) − f (y)| � |y − x|r
}

. (2.12)

3 Dynamic Control

3.1 Abstract Setting

Now let us study the evolution of our particle system along time. We first give our main
result in an abstract setting to alleviate its proof; the reader more comfortable with physical
settings may read Theorem 3.6 instead.

2The proposition remains valid with d = 1, except that it must be demanded that r < 1/2.
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Let H be a Hilbert space, let A be an H -affine space and let (̂Xt)t�0 be some jump
Markov process on A with generator L. Fix o an arbitrary point of A and define

I : A −→ H

x 
→ −→
ox.

(3.1)

Since I is defined up to an additive constant, the operator3 (LI ) : A −→ Hdoes not depend
on the choice of o and we can therefore define (Xt )t�0 as the deterministic process on A

following the differential equation

DtX = (

LI
)

(Xt ). (3.3)

Our goal is to control the distance between ̂Xt and Xt . Here what is important for us
is to have a good control of large deviations for that distance. As Cramér’s method cannot
be applied directly because of the infinite-dimensional setting, we introduce an exponential
utility function U : H −→ R defined by:

U (x) = e‖x‖ + e−‖x‖. (3.4)

The following proposition gathers the properties of U we will use in our work:

Immediate proposition 3.1

1. For all x ∈ H , U (x) � e‖x‖;
2. U (0) = 2;
3. For all x,h ∈ H , U (x + h) � e‖h‖U (x);
4. U is of class C∞;4

5. For all x ∈ H , ∇U (x) is positively colinear to x;
6. For all x ∈ H , |||∇2 U ||| � U (x).

Then one can state the theorem which will be our central tool. We first need some notation
to alleviate our formulas:

Definition 3.2 We denote e1(t) = (et − 1)/t , extended by e1(0) = 1, resp. e2(t) =
(et − 1 − t)/t2, extended by e2(0) = 1/2. We also denote κ− the negative part of κ , i.e.
κ− = max{−κ,0}.

Theorem 3.3 Suppose that (3.3) has a κ-contracting semigroup for some κ ∈ R, in the
sense that for all x ∈ A,h ∈ H :

〈

Dx(LI ) · h,h
〉

� −κ‖h‖2. (3.5)

3Stricto sensu L acts on some space of real functions on A, say the space of continuous bounded functions
Cb(A,R). Yet we can straightforwardly extend L to the space Cb(A,E) for any Banach space E by defining
the operator L(E) : Cb(A,E) −→ Cb(A,E) through:

∀φ ∈ E′ ∀f ∈ Cb(A,E)
〈

φ, L(E)f
〉 = L

(〈φ,f 〉). (3.2)

That is what we do here: I is a function from A to H , so LI actually denotes L(H)I .
4To prove it, note that U (x) = f (‖x‖2), where f = 2 cosh(

√·) is (the restriction to [0,+∞) of) an analytic
function on R.
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Suppose moreover that the Markov process—which we recall to be a jump process—has the
amplitude of all its jumps bounded above by some L < ∞, and satisfies:

∀x ∈ A L(‖ · −x‖2)(x) � V (3.6)

for some V < ∞.
Then, denoting ̂X0 the (random) initial value of the Markov process and X0 the (de-

terministic) initial value of the differential equation (3.3), one has for any T � 0, for any
λ > 0:

ln E
[

U
(

λ(̂XT − XT )
)]

� ln E
[

U
(

λe−κT (̂X0 − X0)
)] + λ2e2(λe2κ−T L)e1(−2κT )V T . (3.7)

Proof The principle of the proof is to show that some time-depending functional

F(̂Xt) = eh(t)U
(

λeκ(t−T )(̂Xt − Xt)
)

, (3.8)

for a well-chosen function h, is a supermartingale.
☛ To make our computations completely rigorous, throughout the proof we will assume

that the expected number of collisions per unit of time is uniformly bounded, that is, that
there is some M < ∞ such that |(L1A′)(x)| � M for all x ∈ A and any Borel subset A′ ⊂ A.
Then the general result can be recovered by a standard truncation argument.

Let us fix some t ∈ [0, T ] and suppose (̂Xt ′)t ′∈[0,t] is known. Let δt be a small amount
of time devised to tend to 0; O(δtn) will denote any quantity bounded by some Cδtn when
δt tends to 0, where C depends only on κ , V , M , λ, T , t and ‖Xt‖. With this notation,
the law of ̂Xt+δt depends on (̂Xt ′)t ′∈[0,t] only through ̂Xt , and our goal is to show that
E[F(̂Xt+δt )] − F(̂Xt), which is O(δt), is nonpositive—more precisely, we only need to
prove that E[F(̂Xt+δt )] − F(̂Xt) � O(δt2).5

Set ̂Y = ̂X − X. Denote δ̂X = ̂Xt+δt − ̂Xt , resp. δX = Xt+δt − Xt , δ̂Y = ̂Yt+δt − ̂Yt ,
δF = F(̂Xt+δt ) − F(̂Xt). The fundamental observation is that

E
[

δ̂X
] = (

LI
)

(̂Xt)δt + O(δt2). (3.9)

Now, admitting temporarily that h will be of class C 2, we write:

δF = h′(t)F (t)δt (3.10)

+ eh(t)λeκ(t−T )∇U (λeκ(t−T )
̂Yt ) · (LI (̂Xt) − LI (Xt ) + κ̂Yt

)

δt (3.11)

+ eh(t)
[

U
(

λeκ(t−T )
̂Yt+δt

) − U
(

λeκ(t−T ){̂Yt + [LI (̂Xt) − LI (Xt )]δt}
)]

(3.12)

+ O(δt2).

In that sum we first see that the term (3.11) is nonpositive: (3.5) indeed implies, for all
x ∈ A,y ∈ H ,

〈

(LI )(x + y) − (LI )(x) + κy, y
〉

� 0, (3.13)

5Beware that “expr. � O(δtn)” does not mean “expr. = O(δtn)” but actually “(expr.)+ = O(δtn)”.
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which we apply here with x = Xt and y = ̂Yt , using that ∇U (λeκ(t−T )
̂Yt ) is positively colin-

ear to ̂Yt (Proposition 3.1-5).
Now let us look at term (3.12). Because of (3.9), the expectation of the random variable

λeκ(t−T )
(

̂Yt+δt − (

̂Yt + [LI (̂Xt) − LI (Xt )]δt
)

)

(3.14)

is O(δt2). We will use it thanks to the following

Lemma 3.4 Let X ∈ H ; let y be an H -valued random variable with zero mean. Then one
has:

E[U (X + y)] � U (X)
(

1 + E
[

e2(‖y‖)‖y‖2
])

. (3.15)

Proof of the lemma Taylor’s formula yields

U (X + y) = U (X) + ∇U (X) · y +
(∫ 1

0
(1 − θ)∇2 U (X + θy)dθ

)

· (y ⊗ y). (3.16)

In that sum the third term is bounded above by

‖y‖2
∫ 1

0
(1 − θ)U (X + θy)dθ (3.17)

by Proposition 3.1-6, which in turn is bounded by

‖y‖2 U (X)

∫ 1

0
(1 − θ)eθ‖y‖dθ = e2(‖y‖)‖y‖2. (3.18)

by Proposition 3.1-3. Taking expectation gives the result since the second term in sum (3.16)
has zero mean by assumption. �

What does it give for us? Let E be the event “some collision occurs between t and
t + δt”. E is an event of probability O(δt), on E, the random variable (3.14) is O(1), and
on cE it is O(δt). Hence, denoting temporarily ∗ for that variable, E[‖ ∗ ‖2e2(‖ ∗ ‖)], up to
some O(δt2), is merely λ2e2κ(t−T )

E[‖δ̂Y‖2e2(‖λeκ(t−T )δ̂Y‖)], which is bounded above by
λ2e2κ(t−T )e2(λe2κ−T L)V uniformly in t .

Putting all things together, we get

E[δF ] �
(

h′(t) + λ2e2κ(t−T )e2(λe2κ−T L)V
)

F(t)δt + O(δt2), (3.19)

which will be � O(δt2) provided

h′(t) � −λ2e2κ(t−T )e2(λe2κ−T L)V . (3.20)

To achieve that optimally with h(T ) = 0, we choose

h(t) = λ2e2

(

λe2κ−T L
)

e1

(

2κ(t − T )
)

V (T − t), (3.21)

which is of class C 2 indeed. Formula (3.7) then follows by the supermartingale property. �

Remark 3.5 Strictly speaking our proof only shows that F(̂Xt) is a local supermartingale.
But this local supermartingale is nonnegative, so it is actually a global supermartingale
(see [17, Sect. IV-1.5]).
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3.2 Application to Boltzmann’s Model

Translation of Theorem 3.3 Let us see what Theorem 3.3 gives for the Boltzmann model.
For the time being, according to Remark 0.1 we do not precise what H and A are: all you
have to know is that H is some Hilbert space of measures and A the corresponding affine
space, which is assumed to contain all the probability measures having enough moments.

Let N ∈ N
�. The stochastic process (̂Xt)t�0 on A will be the empirical measure μ̂N

t of
our microscopic process (v0(t), . . . , vN−1(t)) on (Rd)N . It is a Markov process indeed; let
us denote LN its generator. Regardless of N , one has as expected:

∀μ ∈ A
(

LNI
)

(μ) = Q(μ,μ), (3.22)

so the deterministic process (Xt )t�0 on A will be our macroscopic process following the
Boltzmann equation (1.6). Finally, for μ ∈ A,ν ∈ H , (Dμ(LI )) · ν = 2Q(μ,ν).6 So Theo-
rem 3.3 becomes:

Theorem 3.6 Let H be a Hilbert space of measures and A the corresponding affine space
containing probability measures (or a subset of it, cf. Remark 3.7). Consider our microscopic
and macroscopic models for some N ∈ N

�, with certain initial conditions7 (v0, . . . , vN−1),
resp. μ0.

Suppose that there exists some constants κ ∈ R,L < ∞,V < ∞ such that:

1. For all μ ∈ A,ν ∈ H ,
〈

Q(μ,ν), ν
〉

� −κ

2
‖ν‖2; (3.23)

2. For all μ ∈ A,

E
[‖μt+ − μt‖2

∣

∣μt = μ
]

� V ; (3.24)

3. The effect of collisions for the microscopic model in A is always bounded by L, i.e. one
has almost surely

∀t � 0
∣

∣

∣

∣μ̂N
t+ − μ̂N

t

∣

∣

∣

∣ � L. (3.25)

Then for any T � 0, for any λ > 0,

ln E
[

U
(

λ(μ̂T − μT )
)]

� ln E
[

U
(

λe−κT (μ̂0 − μ0)
)] + λ2e2(λe2κ−T L)e1(−2κT )V T . (3.26)

Remark 3.7 Theorem 3.6 remains valid, with the same proof, if we replace A by any subset
˜A ⊂ A such that almost surely ∀t � 0 ̂XN

t ,Xt ∈ ˜A. An important example of it is that,
when A contains nonpositive measures, one can always take for ˜A the subset of the true
probability measures of A (which subset is stable because of positivity and conservation of
mass for the evolutions, cf. Sect. 1.3), for which the properties of positive measures can be
used.

6Stricto sensu Q(μ, ·) is an affine operator from A to H , not a linear operator on H : in fact here Q(μ,ν)

denotes Q(μ,ν), Q(μ, ·) being the linear part of Q(μ, ·). Identifying notations is relevant because Q, like
Q, is formally defined by (1.7).
7The initial condition for the stochastic process can be random.
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Constants for the Sobolev Setting
☛ From now on, when dealing with Boltzmann models we work in the space Ḣ−s(Rd)

for some r ∈ (0,1). We denote by Cr the Ḣ−s norm of any δx − δy for |x − y| = 1, which is
some finite explicit function of d and r .

To apply Theorem 3.6, we have to compute the values of L, V , κ and E[U (λe−κT

× (̂X0 − X0))]. Here let us just look at the first two quantities—the last two ones will be the
objects of separate sections.

Recall that K denotes the energy of the N -particle system, which is conserved along the
stochastic evolution—note by the way that up to translating the origin of R

d , we can replace
K by the internal energy

˜K = K − |P |2
2N

. (3.27)

Then at any time no particle has speed greater than
√

2K , so the effect of a collision between
two particles on the empirical measure can be no more than 2 · (8K)r/2CrN

−1, which yields
an admissible value for L.

Remark 3.8 To get the bound L � 2 · (8K)r/2CrN
−1 we have used that the relative speed

between two particles is at most 2
√

2K , and that the effect of a collision with relative
speed u is at most 2urN−1. Actually one can do slightly better: the relative speed be-
tween two particles is at most 2

√
K and the effect of a collision with relative speed u is

at most 2
√

21−r − 1Cru
r/N (corresponding to the deviation angle θ = π/2), so we could

have taken

L = 21+r
√

21−r − 1CrK
r/2N−1. (3.28)

It is that bound that we will use in the sequel.

Anyway remember that, since K is going to be of order of magnitude O(N), one has
L = O(Nr/2−1) when N −→ ∞.

Now let us compute V : V is defined by (3.24), which is bounded above by

2Cr
2N−1

∫

(Rd )2
|w − v|2rdμ(v)dμ(w)

Jensen
� 2Cr

2N−1

(∫

(Rd )2
|w − v|2dμ(v)dμ(w)

)r

= 21+2rCr
2N−1

(

˜K

N

)r

� 21+2rCr
2KrN−(1+r); (3.29)

taking into account Remark 3.8, we could even take

V = (21−r − 1)21+2rCr
2KrN−(1+r). (3.30)

Anyway remember that V = O(N−1) when N −→ ∞.
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3.3 Comments on the Results

☛ All the computations in this subsection are heuristic, so we will drop lower order terms
without wondering when we can do so. C1,C2, . . . will denote constants depending only on
κ , V , L and T , whose exact expression does not interest us.

In the right-hand side of formula (3.26) there are two terms: the first one, ln E[U (λe−κT

× (̂X0 − X0))], merely expresses the difference between the experimental initial condition
and its continuous limit. There is obviously no surprise in getting such a term, whose study
is deferred to Sect. 5: for the time being just notice the presence of the factor e−κT in front
of ̂X0 − X0, which means that the effect of initial fluctuations will be quite large if κ < 0,
and conversely quite small if κ > 0.

The actual dynamic effect in (3.26) lies in the term λ2e2(λe2κ−T L)e1(−2κT )V T . Let
us study it in the case of our Boltzmann model, according to Sect. 3.2. We have noticed
that, when N becomes large, one has L = O(Nr/2−1), resp. V = O(N−1). So let us write
L � �Nr/2−1, resp. V � ωN−1. Then the dynamic term of (3.26) becomes

λ2e2(λe2κ−T L)e1(−2κT )V T � λ2N−1e2(λe2κ−T �Nr/2−1)e1(−2κT )ωT . (3.31)

The λ2N−1 factor hints that the good order of magnitude for λ will be λ = O(N1/2). So
write λ = yN1/2; then (3.31) becomes

λ2e2(λe2κ−T L)e1(−2κT )V T � e2(ye2κ−T �N(r−1)/2)e1(−2κT )ωy2T . (3.32)

In our case (r − 1)/2 < 0 so, if N is sufficiently large, ye2κ−T �N(r−1)/2 is very close to zero
and the e2(∗) term is very close to e2(0) = 1/2, finally giving

λ2e2(λe2κ−T L)e1(−2κT )V T � 1

2
e1(−2κT )ωy2T . (3.33)

For a fixed T , (3.33) shows that the dynamic term in formula (3.26) is approximately
C1y

2. Moreover, as we will see in Sect. 5, the static term ln E[U (λe−κT (̂X0 − X0))] is ap-
proximately C2y

2 + C3. In the end, one gets

ln E
[

U
(

yN1/2(̂Xt − Xt)
)]

� C4y
2 + C3, (3.34)

hence by Markov’s inequality and Proposition 3.1-1, for all x > 0,

P

(

yN1/2‖̂XT − XT ‖ � x
)

� eC4y2+C3−x . (3.35)

Optimizing formula (3.35) for fixed x/y ratio, one finally finds:

∀ε � 0 P
(‖̂XT − XT ‖ � ε

)

� exp
(

C3 − C5Nε2
)

. (3.36)

So Theorem 3.6 gives a Gaussian control for the fluctuations between ̂XT and XT for any
fixed value of T —provided the existence of some contractivity constant κ , which for H =
Ḣ−s will be proved for the Maxwellian case in Sect. 4. Moreover the order of magnitude of
the fluctuations we get is N−1/2, the typical deviation size in central limit theorems. So we
may say that the bounds we have got are a kind of explicit dynamic central limit bound for
the Boltzmann model.
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Remark 3.9 Actually the approximations we made to get (3.34) are sensible only if y is
not too large, otherwise λe2κ−T �Nr/2−1 � 1 and then the e2(∗) term in (3.31) cannot be
considered as close to 1/2. It follows that our computations are valid only for λ � N1−r/2/�,
i.e. for y � N(1−r)/2/�. Tracking that constraint throughout our reasoning, it finally turns
out that (3.36) is only valid for ε � T ωN−r/2/�. So our Gaussian control does not hold
up to large deviations but only till some intermediate deviations.8 Fortunately (3.36) tells
us that the probability of such intermediate deviations is bounded above by something like
e−C6N1−r

, which goes very fast to 0 anyway. Moreover, even for ε � ωT N−r/2/� one can
still use (3.35) with y = N(1−r)/2/� and k � yN1/2ε, which gives an exponential control of
the tail of the law of ‖̂XT − XT ‖ applicable to large deviations.

The behaviour of formula (3.33) as T becomes large depends on the sign of κ :9

• If κ < 0 (the worst case), then the e1(−2κT ) factor becomes exponentially large as soon
as T � 1/|κ|. Thus the dynamic control given by Theorem 3.6 is relevant only for mod-
erate values of T corresponding to durations for which each particle makes only a couple
of collisions. Moreover, as we noticed in the beginning of that subsection, in that case
the term due to the control of initial fluctuations will become huge as T increases. Note
however that qualitatively we get a Gaussian control for any fixed T , only the constants
in that control becoming bad.

• If κ = 0 the dynamic term of (3.26) increases proportionally to T , so our bound remains
good even for moderately large values of T , but ultimately becomes uninteresting.

• If κ > 0 (the best case) then T e1(−2κT ) −→ 1/2κ when T −→ ∞, so the right-hand
side of (3.26) remains bounded uniformly in T , implying that the N -particle model ap-
proximates well its continuous limit for any time.10 Note that κ > 0 is tantamount to
having an exponential convergence of (1.6) to equilibrium in A, so in that case our bound
rather looks like a result of convergence to “equilibrium” for the empirical measure μ̂N

t .

4 Contractivity of the Collision Kernel

4.1 Limitations Due to Our Settings

In this section we are going to look for computing constant κ in (3.5). Unfortunately it turns
out that, for the choices we have made, our results are unavoidably limited, as we quickly
explain in this foreword. Let me stress however that all the issues encountered may be solved
by working in a trickier space than the plain Ḣ−s (cf. Remark 0.1).

8Note however that our control (3.28) on L was very coarse: in real situations indeed the maximal relative

speed between two particles is ∼√
lnN with very large probability (think about the Maxwell distribution), so

in most cases L ∼ (lnN)r/2N−1, and then we can study deviation orders N−η with η arbitrarily close to 0.
However such a study needs a control on the probability that L becomes large, in other words a control on
the probability of appearance of an abnormally hot particle, which would require another article.
9In Sect. 4.1 we will see that for H = Ḣ−s , κ is actually always negative. Our the discussion is relevant
nevertheless, because it remains valid for other applications of abstract Theorem 3.3, therefore highlighting
the interest of choosing a Hilbert space better than Ḣ−s .
10Beware: it does not mean that one random particle system has large probability to stay always close to
the continuous limit—which is trivially false by ergodicity—but that at any given time, most of the particle
systems will be close to the limit.
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First κ can only be negative, which is the worst case (see page 1118). Why that? Well, if
κ were positive, as we said previously it would imply convergence of (1.6) to a unique equi-
librium for all probability measures. Yet there are several different equilibrium probability
measures for the Boltzmann evolution (see formula (1.8) and below), whose differences lie
in Ḣ−s , which is a contradiction. So κ is nonpositive. Then we could prove, using that the
model is nondegenerate, that κ cannot be zero and thus is negative. To have a chance to
get positive values of κ , Ḣ−s should be replaced by a Hilbert space containing only signed
measures η such that

∫

η(dx),
∫

xη(dx),
∫ |x|2η(dx) = 0—but which one?

Secondly, the only chance for κ to be finite is the case of Maxwellian models (remember
definition below (1.5)): this is due to a bad scale invariance property for non-Maxwellian
models, cf. Remark 4.4. Though the Maxwellian case is often a useful first step for theo-
retists, the physical models encountered in real life do not have any reason for being so!
To have a chance to get results for non-Maxwellian models, Ḣ−s should be replaced by
some non-homogeneous space—but non-homogeneous spaces are often less tractable than
homogeneous spaces and more difficult to interpret physically.

4.2 Principle to the Computation of κ

To check hypothesis (3.23), according to Remark 3.7, we can consider our Markov processes
restricted to the set of probability measures, and then by positive linearity it suffices to
prove (3.23) when μ is a Dirac mass:

Immediate proposition 4.1 If, for one arbitrary (then for all) v ∈ R
d , the linear operator

Q(δv, ·) : Ḣ−s −→ Ḣ−s satisfies the “contractivity” property

∀f ∈ Ḣ−s 〈Q(δv, f ), f 〉 � −κ

2
‖f ‖2, (4.1)

then the restriction of Q to probability measures satisfies hypothesis (3.23).

Remark 4.2 It is not hard to see that conversely the best κ possible in (3.23) is exactly the
best κ possible in (4.1). We do not prove it as it is not essential, but it will be implicitly used
in Remark 4.4.

Lemma 4.3 Recall definition (2.5) of φs . Note (∗φs) the convolution operator

∗φs : Ḣ−s −→ L2

f 
→ f ∗ φs.
(4.2)

Then Q(δv, ·) : Ḣ−s −→ Ḣ−s satisfies property (4.1) if and only if

(∗φs) ◦ Q(δv, ·) ◦ (∗φs)
−1 : L2 −→ L2 (4.3)

satisfies the same property in the space L2(Rd).

Proof It follows directly from the isomorphism formula (2.6). �

Remark 4.4 Now we can understand why κ cannot be finite for a non-Maxwellian model:
suppose the model satisfies (1.5) with g �= 0, and for λ ∈ (0,+∞) denote by Iλ the homo-
thety transforming v into λv, then you get

Q
(

δ0, Iλ#μ
) = λgIλ#Q

(

δ0,μ
)

, (4.4)
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so if Q(δ0, ·) were κ-contracting for a κ < 0 it would also be λgκ-contracting for all λ, thus
0-contracting, which is impossible.

4.3 Effective Computation

Lemma 4.5 Let θ ∈ [0,π ]; define the linear operator Q̌θ on measures on R
d , such that

Q̌θ (δv) is the uniform probability measure on the (d − 2)-dimensional sphere11 of velocities
v′ such that |v′ − v/2| = |v|/2 and ̂v v

2 v′ = θ . Then

(∗φs) ◦ Q̌θ = (

cos(θ/2)
)s

Q̌θ ◦ (∗φs). (4.5)

Remark 4.6 Q̌θ (δv) respresents the post-collisional distribution of velocity of a particle at
initial velocity v which has collided with a particle at initial velocity 0, undergoing an an-
gular deviation θ in the collision referential, the precise direction of that deviation being
random.

Proof Let us give first a neat proof working when d is even. Call Rθ the set of the rotations
R of R

d satisfying v̂0(Rv) = θ/2 for all v ∈ R
d . If d is even, Rθ is non-empty and has some

canonical probability measure πθ equipping it. Then we notice that

Q̌θ (μ) =
∫

Rθ

[cos(θ/2)R]#μ dπθ(R). (4.6)

Because of the rotational invariance of φs , for any R ∈ Rθ ,

(∗φs) ◦ R# = R# ◦ (∗φs). (4.7)

Similarly, the scale invariance of φs makes that for any λ ∈ (0,∞),

(∗φs) ◦ Iλ# = λs · Iλ# ◦ (∗φs). (4.8)

The result then follows by applying formulas (4.7) and (4.8) to the integral (4.6).
When d is odd unfortunately I have nothing better than a calculation—which by the

way also works for d even. Choose an arbitrary v > 0, we will prove that (Q̌θ δv) ∗ φs =
Q̌θ (δv ∗φs), where v also denotes the point (v,0, . . . ,0) ∈ R

d . Since these two functions are
invariant by any rotation around v, we will locate a point in R

d merely by its first coordinate
z and its distance ρ to the z axis; we will also denote Z = √

z2 + ρ2 its distance to 0. In
the following calculations S denotes the unit sphere in R

d−1, equipped with its Lebesgue
probability measure σ , and ρ also denotes the point (ρ,0, . . . ,0) ∈ R

d−1; points of S are
denoted y = (y0, y1) with y0 ∈ R, y1 ∈ R

d−2. Treating (Q̌θ δv) ∗ φs as a function, we find:

(

(Q̌θ δv) ∗ φs

)

(z, ρ)

=
∫

S

{

(

cos(θ/2)v − z
)2 + (

sin θy0v/2 − ρ
)2 + (sin θ)2|y1|2v2/4

}−(d−s)/2
dσ(y0, y1)

=
∫

S

{

Z2 + cos(θ/2)2v2 − 2 cos(θ/2)2vz − sin θvρy0

}−(d−s)/2
dσ(y0, y1). (4.9)

11That sphere degenerates into a point if θ ∈ {0,π}.
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For Q̌θ (δv ∗φs) it is more complicated since that case needs computing a expression of type
Q̌θf , f being a function. Usually that kind of computation raises no difficulty, but here the
operator Q̌θ has some singularity which makes it less tractable: in Q̌θf , the “mass” (in the
measure sense) received by the point (z,0, . . . ,0) comes only from a (d − 2)-dimensional
sphere in R

d—more precisely the sphere of points (z, ρ), ρ ∈ R
d−1, with |ρ| = tan(θ/2)z.

That regularity problem can be overcome by an approximation technique, yielding:

(

Q̌θf
)

(z,0, . . . ,0) = 1

cos(θ/2)d

∫

S

f
(

z, [tan(θ/2)z]y)

dσ(y) (4.10)

—that formula also allowing to compute Q̌θf at points not located on the z axis by rotational
invariance.

So
(

Q̌θ (δv ∗ φs)
)

(z, ρ)

= cos(θ/2)−d ·
∫

S

{

(

z − tan(θ/2)ρy0 − v
)2 + (

ρ + tan(θ/2)zy0

)2

+ tan(θ/2)2Z2|y1|2
}−(d−s)/2

dσ(y0, y1)

= cos(θ/2)−d

∫

S

{

(

1 + tan(θ/2)2
)

Z2 − 2v
(

z − tan(θ/2)ρy0

) + v2
}−(d−s)/2

dσ(y0, y1)

= cos(θ/2)−s
(

(Q̌θ δv) ∗ φs

)

(z, ρ). (4.11)

�

Corollary 4.7 Let Qθ = Q̌θ + Q̌π−θ − Q̌0 − Q̌π . Then, for any f ∈ Ḣ−s ,

〈Qθf,f 〉 �
[(

cos(θ/2)
)r + (

sin(θ/2)
)r − 1

] · ‖f ‖2. (4.12)

Proof Observe first that Q̌0 is the identity and that Q̌π = 0, so it suffices to prove that the op-
erator norm of Q̌θ in Ḣ−s is bounded above by (cos(θ/2))r . By isomorphism formula (2.6),
that is also the norm of (∗φs) ◦ Q̌θ ◦ (∗φs)

−1 in L2, which is cos(θ/2)sQ̌θ by Lemma 4.5.
So we just have to bound the norm of Q̌θ , regarded as an operator in L2, by cos(θ/2)−d/2.
Now we note that one can write

Q̌θf = Icos(θ/2)# ˜Qθf, (4.13)

where ˜Qθ is the kernel of the Markov chain on R
d which sends x uniformly to the (d − 2)-

dimensional sphere of points y such that |y| = |x| and ̂x0y = θ/2. But that Markov chain
has the Lebesgue measure on R

d as reversible equilibrium measure, so |||˜Qθ |||L2 � 1, thus
|||Q̌θ |||L2 � cos(θ/2)−d/2, quod erat demonstrandum. �

Now we are ready to state the main result of this section:

Theorem 4.8 In a Maxwellian model, calling γ the common value of all the measures γ u,
the collision kernel Q, when restricted to the probability measures, satisfies hypothesis (3.5)
with

κ =
∫ π

0

[

1 − cos(θ/2)r − sin(θ/2)r
]

dγ (θ). (4.14)
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Proof Note that

Q(δ0, ·) = 1

2

∫ π

0
Qθ dγ (θ) (4.15)

and apply all the previous work of this section (Lemmas 4.1, 4.3, 4.5 and 4.7). �

Example 4.9 The “Kac” model12 is the case where the measure γv,w always has total mass
1 and is uniform on the sphere supporting it, i.e. it is the Maxwellian model with

dγ (θ) = �(d − 1)

2d−2�((d − 1)/2)2
(sin θ)d−2dθ. (4.16)

By Theorem 4.8, for that model one has −∞ < κ < 0 for any r ∈ (0,1).

Example 4.10 The model of Maxwellian potential corresponds to particles having a repul-
sive force with a radially symmetric potential decreasing like ρ−(2d−2) as the distance ρ

between two particles increases. For that model dγ ∼ θ−3/2dθ when θ −→ 0 for any d (thus
the measure γ is not finite, however it remains possible to define both the N -particle and
the limit models, cf. Remark 1.1-3), so by Theorem 4.8 one also has −∞ < κ < 0 for any
r ∈ (0,1).

5 Initial Value

In formula (3.26) given by Theorem 3.6, as we saw, besides the dynamic term there is a
term due to the fluctuations of the initial empirical measure. In this section we control these
fluctuations in the case of i.i.d. initial particles.

Let μ be a probability measure on R
d and let r ∈ (0,1). We assume that μ has an r-th

exponential moment, i.e. that there exists some a > 0 such that

∫

Rd

ea|v|r dv < ∞. (5.1)

In the sequel we suppose a fixed.
If v is a random variable of R

d with law μ, then δv − μ is a random variable in Ḣ−s ,
whose law will be denoted Dμ: Dμ is a centered probability measure on Ḣ−s . I claim that
Dμ has an exponential moment with parameter a, i.e.

∫

Ḣ−s

ea‖ν‖dDμ(ν) < ∞. (5.2)

To prove it suffices to note that

‖δv − μ‖ � ‖δv − δ0‖ + ‖δv0 − μ‖ = Cr |v − v0|r + ‖δv0 − μ‖, (5.3)

whose a-parameter exponential is integrable because of (5.1).

12Actually this is not exactly the Kac model of [11], but the spirit is the same.
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So the law Dμ has a finite exponential moment, hence a fortiori a finite variance. Let us
denote it by σ 2:

σ 2 =
∫

Ḣ−s

‖ν‖2dDμ(ν). (5.4)

Now we have all the definitions at hand to state the main result of this section:

Theorem 5.1 Let v0, . . . , vN−1 be N i.i.d. random variables on R
d with law μ, and denote

μ̂N = N−1
∑N−1

i=0 δvi
their empirical measure. Then there exists an explicit constant A(μ),

which is easy to bound, such that for all λ � aN :

E
[

U
(

λ(μ̂N − μ̂)
)]

� 2 exp

(

λ2σ 2

2N
+ λ3A(μ)

N2a3

)

. (5.5)

Before proving Theorem 5.1, let us further examine formula (5.5): the term in the expo-
nential remains bounded when N −→ ∞ if λ increases as N1/2, like in (3.31). Thus, writing
λ = yN1/2 like in (3.34):

E
[

U
(

yN1/2(μ̂N − μ)
)]

� 2 exp

(

σ 2y2

2
+ A(μ)y3

a3
N−1/2

)

. (5.6)

Though we will not use it in the sequel, note the following

Corollary 5.2 For S � σ 2, for all x � 0, for all N � N0 := x2/a2S2:

P

(

‖μ̂N − μ‖ � xN−1/2
)

� exp

(

− x2

2S
+ ln 2 + A(μ)N0

1/2N−1/2

)

. (5.7)

Remark 5.3 (5.7) works as soon as N � x2/a2S2, i.e. as soon as x � aSN1/2, so that esti-
mate is valid up to the large deviations setting.

Proof of Theorem 5.1 The principle of the proof is exactly the same as for Theorem 3.3,
except that here time will be discrete.

Let v0, . . . , vN−1 be N i.i.d. random variables with law μ and set ̂Mi = ∑i−1
j=0 N−1

× (δvi
− μ), then ( ̂Mi)i is a Markov chain and a martingale, and ̂MN has the same law

as μ̂N . So it suffices to prove that for all 0 � i < N ,

E
[

U (λ ̂Mi+1)
∣

∣ ̂Mi

]

� exp

(

λ2σ 2

2N
+ λ3A(μ)

a3N2

)

U (λ ̂Mi). (5.8)

To get (5.8), thanks to Lemma 3.4 it suffices to prove that

∫

(

eλN−1‖ν‖ − N−1λN−1‖ν‖)dDμ(ν) � exp

(

λ2σ 2

2N2
+ λ3A(μ)

a3N3

)

. (5.9)

We set

A(μ) =
∫

(

ea‖ν‖ − a‖ν‖ − 1
)

dDμ(ν). (5.10)
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The function e2(t) = (et − 1 − t)/t2 is convex on R+, so

∀t � 0 ∀θ ∈ [0,1] eθt − θt − 1 � 1

2
(1 − θ)θ2t2 + θ3(et − t − 1). (5.11)

Consequently

∫

(

eN−1λ‖ν‖ − N−1λ‖ν‖ − 1
)

dDμ(ν) �
(

1 − λaN−1
)λ2σ 2

2N2
+ λ3A(μ)

a3N3
, (5.12)

whence (5.9). �

6 Discussion

6.1 Examples of Synthetic Results

Until now in this article I have just given separate results, mainly Theorem 3.6, formu-
las (3.28) and (3.30), and Theorems 4.8 and 5.1. Obviously all these results are to be put
together to get synthetic results on the convergence of N -particle dynamic models to their
mean field limit; yet I did not do it in the previous sections.

There are several reasons why I have postponed the presentation of such synthetic results
to the last section. The most obvious one is that these global results would have been quite
unreadable if put in the beginning of the article. More important, the different “bricks” of
results given within the core of the paper are open to improvements different for each, some
of which may work for some cases but not for others, so that there may be no ideal general
result.

Let us however give some examples of formulas got by piling our theorems together—
proofs will not be given since they really consist in plain gluing game:

Theorem 6.1 Let d � 2, r ∈ (0,1). Let μ0 be a probability measure on R
d with finite r-

exponential moments for all r < 1. Up to translating the origin of R
d we can suppose that

p := ∫

Rd vdμ0(v) = 0; then let k = 1
2

∫ |v|2dμ0(v). Choose some k1 > k and define

κ = 1 − �(d − 1)

2d−3�(d − 1)/2)2

∫ π

0
sin(θ/2)r sin(θ)d−2dθ,13 (6.1)

� = 21+r
√

21−r − 1Crk
r/2
1 , (6.2)

ω = (21−r − 1)21+2rCr
2kr

1, (6.3)

σ 2 =
∫

Rd

‖δv − μ0‖2
Ḣ−s dμ0(v). (6.4)

Let N � 2; let v0
0, . . . , v

0
N−1 be N i.i.d. random variables with law μ0 and let μ̂N

0 be their

empirical measure; denote ̂KN = 1
2

∑N−1
i=0 |v0

i |2. Let μ̂N
t be the empirical measure at time t

of the Markov process with generator (1.1) for the “Kac” model (4.16) and initial condition
(v0

0, . . . , v
0
N−1). Let (μt )t�0 be the deterministic evolution (1.6) for the same model with

initial value μ0.

13Warning, κ is negative.
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Then for any a > 0, there is a (easily bounded) constant A(a,μ) such that, for any T > 0,
as soon as λ � ae−|κ|T N :

ln E
[

1
̂KN �Nk1

U
(

λ(μ̂N
t − μt)

)]

� ln 2 + e2|κ|T λ2σ 2

2N
+ e2|κ|T λ3A(a,μ)

N2a3
+ λ2ωT

N
e1(2|κ|T )e2

(

λe2|κ|T �Nr/2−1
)

.

(6.5)

Corollary 6.2 For the same model, for any y � 0:

lim
N−→∞

ln E
[

1
̂KN �Nk1

U
(

yN1/2(μ̂N
t − μt)

)]

� ln 2 + e2|κ|T σ 2y2

2
+ e1(2|κ|T )

ωTy2

2
. (6.6)

Corollary 6.3 Still for the same model, for any x � 0:

lim
N−→∞

P
(‖μ̂N

t − μt‖ � xN−1/2
)

� 2 exp

( −x2

2
[

e2|κ|T σ 2 + e1(2|κ|T )ωT
]

)

. (6.7)

Remark 6.4 As (6.7) is true for any value of k1, we can make k1 approach k in it, which
allows to replace ω by ω0 := (21−r − 1)21+2rCr

2kr .

6.2 Optimality

Theorem 6.1 essentially gives a convergence to the continuous limit at rate N−1/2 with
Gaussian control. Qualitatively it is the best result one could hope for, because it is the same
way of convergence as for central limit theorems. Quantitatively however, is the parameter
in the Gaussian bound optimal?

Here we will look at what happens for Theorem 5.1 (Theorem 3.3 exhibits the same
behaviour, but it is harder to see). Through Corollary 5.2, Theorem 5.1 gives some Gaussian
bound in an infinite-dimensional frame. Yet its proof, whose main ingredient is the use of
the utility function U , would work as well in a finite-dimensional setting. So let us imagine
that we replace Ḣ−s by R

d and Dμ by the centered normal law with variance Id , denoted by
N ; then σ 2 becomes

∫

Rd |x|2dN (x) = d . In that case μ̂N turns into a random variable XN

on R
d which is centered normal with variance N−1Id , and we get:

P(|XN | � xN−1/2) � exp

(

− x2

2d
+ ln 2 + AN0

1/2N−1/2

)

(6.8)

for some A and N0 not depending on N , so making N −→ ∞:

N (|X| � x) � 2e−x2/2d , (6.9)

whereas the exact result is

N (|X| � x) = 21−d/2

�(d/2)

∫ ∞

x

yd−1e−y2/2dy ≈
x−→∞ e−x2/2, (6.10)

where “≈” means “having equivalent logarithms”.
So for d > 1 the parameter in the Gaussian bound is underestimeted by a factor d . Why

that? Well, the proof of Theorem 5.1 uses the bound on the curvature of the utility function
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U given by Proposition 3.1-6. But as soon as x is reasonably large, the Hessian of U at
x is much more curved in one direction than in all the other ones, so that formula (3.15)
in Lemma 3.4 becomes strongly suboptimal since the factor ‖y‖2 in it should morally be
replaced by the sole component of the variance of y in the direction along which ∇2 U (x) is
most curved.

So the techniques involving U are poor as soon as the dimension in which the random
phenomena occur becomes large. For our particle models we work in Ḣ−s , whose dimension
is. . . infinite! Does that mean that our results are “infinitely bad”? Actually not, because each
increment of the martingale ̂M (see the proof of Theorem 5.1) is determined by the value
of one vi , so the law of this increment may be seen as a probability on R

d . More precisely,
the support of Dμ is isometric to R

d equipped with the distance | · − · |r , whose Hausdorff
dimension is d/r , so that the “effective” dimension of Ḣ−s in our theorem is d/r .

As a consequence we had better not choose r too close to 0. On the other hand, the bigger
s is, the more regular the test functions in the definition of ‖ · ‖Ḣ−s (see Proposition 2.3) are,
so the less small-scale details ‖ · ‖Ḣ−s catches.14 So it should be advised to take medium
values of r , e.g. r = 1/2.

6.3 A Numerical Computation

One important side of our work is that it gives non-asymptotic results. The idea behind it is
that, to understand Boltzmann’s evolution, we will not actually look at N −→ ∞, but rather
take some fixed large N and say that the behaviour of the N -particle system for that N is very
close to the limit evolution with very large probability. In particular, think about the case of
numerical simulation: we cannot afford dealing with 1024 particles on our computers!

Here I will compute numerical values for the following case: the collision kernel is the
one of “Kac” model for d = 3 and we take μ0 = 1

2 (δ−1 + δ1). Physically speaking, it means
that we crash together two same-sized sets of frozen particles with relative speed 2. Then the
collisions between particles of differents sets will tend to scatter the distribution of velocities
of the particles, which will morally converge to the law (1.8) with k = 1/2 in a few units of
time—this is the behaviour of Boltzmann’s equation (1.6) indeed. The question is, which N

shall we choose to be almost certain that the evolution of the particle system will be fairly
close to (1.6)?

Say we take r = 1/2 and we want to have ‖μ̂N
T − μT ‖Ḣ−s greater than ε = 10−2 with

probability less than q = 10−1 for T = 3. As in our case ̂KN � Nk almost surely, we take
k1 = k = 1/2. Then one computes the following numerical values, which are all rounded
above:

−κ � 0.600; (6.11)

� � 0.432; (6.12)

ω � 0.0933; (6.13)

σ 2 � 0.0398. (6.14)

We choose arbitrarily a = 1; then (5.10) gives A(a,μ) � 0.0213. We have to take λ �
| lnq|/ε, so let us put λ = 500. For N = 8 · 105 we find by (6.5):

ln E
[

U
(

λ(μ̂N
t − μt)

)]

< 2.692, (6.15)

14Remember however that homogeneous Sobolev spaces have no inclusion relations.
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thus

P
[‖μ̂N

t − μt‖ � 10−2
]

< 10−1 (6.16)

by Markov’s inequality.
So with a discrete system of 8 · 105 particles one will much probably find a quite good

approximation of Boltzmann mean field limit by running the particle system 3 units of time.
Now simulating 8 · 105 particles is easy for today’s computers, which shows that our bounds
can actually be useful in practice. However there is little doubt that the true speed of con-
vergence is much faster than what our computations suggest.

Remark 6.5 Here we have bypassed the problem of the 1
̂KN �Nk1

factor in (6.5) by a specific
argument. How can we do for it in the general case? Well, merely note that, as soon as one
wants to have a result in terms of probability, they will just have to add P(̂KN > Nk1) to the
probability they get forgetting the indicator. But the event {̂KN > Nk1} is a large deviations
event, so as soon as μ0 has some square-exponential moment its probability will decrease
exponentially with N and thus cause no problem actually.

6.4 Comparison to Older Results

The usual method to tackle mean field limit problems relies on the concept of propagation
of chaos devised by Kac [11]. Briefly speaking, propagation of chaos consists in studying
the law of the N -particle assembly (v0, . . . , vN−1) through its finite-dimensional marginals,
i.e. in studying the laws of the (v0, . . . , vk−1)’s for k finite. One says that there is “chaos”
when these finite-dimensional laws tend to product laws u⊗k when N −→ ∞, and the goal
is to prove that, if there is chaos at time 0, then this chaos “propagates” for all t .

Propagation of chaos has been proved by Sznitman [20] for spatially homogeneous Boltz-
mann models, and more recently by Graham and Méléard [10] for the more general Povzner
equation. Actually, proving propagation of chaos is the same as proving the convergence of
empirical distributions of the N -particle system to some deterministic distribution, but prop-
agation of chaos emphasizes the individual behaviour of each particle, which is described by
the nonlinear particle [21]. On the other hand, the finite-dimensional setting of that method
makes that the quantitative results got thanks to it (for instance in [9, 13]) do not translate
very well when one tries to control the difference between μ̂N and μ in some metric space.

My paper was motivated by the reading of [2], in which Bolley, Guillin and Villani tackle
some mean field limit problems in a quantitative way by working with W1 Wasserstein
distances for the empirical measures. They get an explicit control on the large deviations of
the difference between the empirical measure of the N -particle system and its theoretical
limit for positive times. Yet there are two annoying shortcomings in their work:

• First, it seems to be limited to McKean–Vlasov models, that is, systems where the inter-
actions between particles are due to forces rather than collisions. The proofs of [2] indeed
fundamentally relie on a coupling technique (popularized by Sznitman [20]), in which
one defines a coupling between the real assembly of particles and a virtual assembly of
N independent nonlinear particles. Such a technique has little relevance when one deals
with collisions, because these events imply two particles at the same moment each time
they occur, so there is no natural way of coupling with independent particles.

• Secondly, the results of [2] are good for large deviations, but the control they give for
medium deviations is far too poor to get, as we would wish, some N−1/2 convergence
rate. As we tell in Appendix, that is actually an intrinsic shortcoming of W1 distances.
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After writing my article I discovered some other papers sharing certain features with
mine:

• The microscopic model exposed in this paper is an example of Bird’s direct simulation
Monte-Carlo method [1], whose convergence for the Boltzmann equation was proved
in [16, 24], with explicit estimates on L1 distance of the marginals.

• The first having looked at the empirical distribution of the particles in Hilbert spaces to
bypass the coupling problems were Fernandez and Méléard [8], who analysed the fluctu-
ations of the particle distribution when N −→ ∞ in a spirit close to uniform central limit
theory [7].

• Aldéric Joulin pointed out to me that my convergence theorems could be interpreted as re-
sults of concentration of measure for a Markov process with positive curvature, according
to the geometric notions for Markov chains introduced by Ollivier in [15]. Hypotheses 1, 2
and 3 of Theorem 3.6 indeed correspond resp. to the hypotheses about the discrete Ricci
curvature κ , the coarse diffusion constant σ(x) and the granularity σ∞ in Theorem 33
of [15].

6.5 Uniform in Time Bounds

The results we have given work for some fixed T , i.e. they control ‖μ̂N
T − μT ‖. It may be

more natural to control supt∈[0,T ] ‖μ̂N
t −μt‖, i.e. to say that the system is always close to the

Boltzmann mean field limit between times 0 and T , as [2] does for McKean–Vlasov models.
We do not do it here, but note that, as we have used martingale techniques, getting results
valid for all t ∈ [0, T ] could be easily achieved from the previous work by using stopping
times. Actually for κ � 0 it would turn out that uniform in time results are not much different
from fixed time results (which is quite logical because then the control on ‖μ̂N

t −μt‖ is worst
for t = T ). For κ > 0 yet, when T is large the maximum of the difference between μ̂N

t and
μt is much less well controlled than its terminal value, as we already noticed in footnote 10
at p. 1118.

Appendix: Why Wasserstein Distances Cannot Yield N−1/2 Convergence

This appendix aims at explaining quickly why, in quite general situations, the W1 distance
cannot yield a N−1/2 rate of convergence for the empirical distribution of an assembly of N

particles to its continuous limit. As it is not the main matter of this article, I will remain at a
heuristic level.

My explanation relies on the transportation interpretation of W1 distances. Recall that a
coupling between two finite measures of same mass μ and ν on respective spaces X and Y is
a measure π on X × Y whose marginals are resp. μ and ν, i.e. s.t. π(A × Y ) = μ(A) for all
measurable A ⊂ X, resp. π(X×B) = ν(B). π is also called a transportation plan because it
describes a way to transport a mass distributed according to μ into the mass distribution ν.
The set of couplings between μ and ν is always non-void; we denote it �(μ,ν). When
X = Y = R

d , for π ∈ �(μ,ν) we define the transportation cost

I [π ] =
∫

(Rd )2
|y − x|dπ(x, y), (A.1)

which represents the total effort you have to put in to transform μ into ν following the
plan π . Then the optimal transportation cost is merely

W1(μ, ν) = inf
π∈�(μ,ν)

c(π). (A.2)
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It is a deep result due to Kantorovitch [12] that definitions (2.1) and (A.2) actually coincide.
For more details on all that, see [23, Sect. 1].

Now, consider a N -particle system whose empirical measure μ̂N is expected to converge
to some density measure μ, say the Lebesgue measure on [0,1]d , and look at the Wasserstein
distance W1(μ, μ̂N). Let π be a coupling between μ̂N and μ. Write μ̂N = N−1

∑N

i=1 δvi
, and

call Ai ⊂ R
d the image of N−1δvi

by the transportation plan π . Ai has Lebesgue measure
N−1, so its observable diameter, which by isoperimetry is minimal when Ai is a ball, is
at least ∼ N−1/d , therefore

∫

Ai
|v − vi |dμ(v) � N−1 · N−1/d . Thus the total transportation

cost between μ and μ̂N is I [π ] = ∑

i

∫

Ai
|v − vi |dμ(v) � N−1/d , and since that is true

for any transportation plan, in the end W1(μ, μ̂N) � N−1/d . But that is always true, however
cleverly you might choose the vi ’s (in other words, the phenomenon we describe is not due to
fluctuations but to discretization), so for d > 2,15 it is hopeless getting an N−1/2 convergence
rate of μ̂N to μ for the Wasserstein distance.
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